Bernoulli-Experiment und -Kette

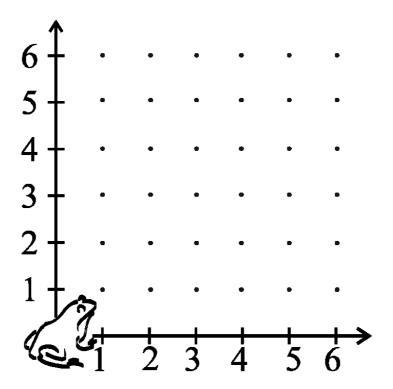
1. Aufgaben zur Anwendung

Walter zinkt Würfel so, dass äußerlich keine Veränderung zu erkennen ist, die Wahrscheinlichkeit für "6" aber 0, 25 beträgt. Seine Frau Trude testet die Würfel folgendermaßen: Sie würfelt zwölfmal mit jedem Würfel. Wirft Sie mit einem Würfel mehr als dreimal eine "6", so legt sie ihn zu den gezinkten, sonst zu den idealen.

- (a) Wie groß ist die Wahrscheinlichkeit, dass ein idealer Würfel zu den gezinkten gelegt wird?
- (b) Wie groß ist die Wahrscheinlichkeit, dass ein gezinkter Würfel zu den idealen gelegt wird?
- (c) Wie könnte Trude die Fehlerquote verringern?

 $\label{eq:Lossing: Lösung: Lösung: Lösung: Lösung: (a) } n = 12; \ p_{\frac{1}{6}}(Z>3) = 1 - \Sigma_{i=0}^3 B(12,\frac{1}{6},i) = 1 - 0,87482191 \approx 12,5\%$

(b) n = 12; $p_{0,25}(Z \le 3) = \sum_{i=0}^{3} B(12, 0, 25, i) = 0,64877 \approx 64,9\%$


2. Aufgaben zur Anwendung

Ein Ko-Frosch sitzt auf einem Gitterpunkt eines Koordinatensystems und kann jeweils nur zum nächsten Gitterpunkt nach oben oder nach rechts springen und zwar jeweils mit der Wahrscheinlichkeit $p = \frac{1}{2}$.

Beispiel: Befindet sich der Ko-Frosch auf dem Gitterpunkt (4|3), dann kann er nur nach (4|4) oder (5|3) springen.

- (a) Der Ko-Frosch sitzt auf dem Gitterpunkt (0|0).
 - i. Auf welchen Gitterpunkten kann er sich nach 5 Sprüngen befinden?
 - ii. Wie viele Sprünge benötigt er, um den Gitterpunkt (18|17) zu erreichen?
 - iii. Denk dir weitere zwei weitere Fragen aus und beantworte sie.
- (b) Der Ko-Frosch sitzt auf dem Gitterpunkt (0|0) des Koordinatensystems und kann jeweils nur zum nächsten Gitterpunkt nach oben oder nach rechts springen und zwar jeweils mit der Wahrscheinlichkeit $p=\frac{1}{2}$

- i. Mit welcher Wahrscheinlichkeit erreicht er den Gitterpunkt (4|0), den Gitterpunkt (8|1), den Gitterpunkt (2|2)?
- ii. Mit welcher Wahrscheinlichkeit sitzt er nach 20 Sprüngen nicht auf einer Koordinatenachse?
- iii. Denk dir weitere zwei weitere Fragen aus und beantworte sie.

- $L\ddot{o}sung$: i. Bedingung x + 5 = 5, also (0|5), (1|4), (2|3), (3|2), (4|1), (5|0)
 - ii. 18 + 17 = 35
 - (b) i. $p((4|0)) = (\frac{1}{2})^4 = 6,25\%, p((8|1)) = 9 \cdot (\frac{1}{2})^9 = 1,76\%, p((2|2)) = 3 \cdot (\frac{1}{2})^4 = 18,8\%$ ii. $p_{nichtaufKO-Achse} = 1 2 \cdot (\frac{1}{2})^{20} = 99,9998\%$